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The adiabatic relaxation method is extended to two dimensions using a moving finite 
element model. The MHD equations are split into ideal and diffusion parts by employing a 
fractional timestep. The ideal equations are expressed in variational form using Hamilton’s 
principle. Finite element discretisation of the variational principle leads to equations for study- 
ing equilibria, time dependent MHD and stability It is shown that conjugate gradient 
accelerated SSOR is effective in solving the nonlinear minimisation problem arising in finding 
equilibria. Aligning the finite elements with flux surfaces causes surface averaged transport to 
emerge naturally from the diffusion part of the timestep. G 1987 Academic Press, Inc. 

1. INTRODUCTION 

The complexity of the motion of a plasma confined by a magnetic field has led to 
a large variety of simulation models [ 11. Even in the MHD limit, the range of 
timescales is such that MHD models specifically designed for fast (Alfvenic), mixed 
(resistive), and slow (transport) timescales have been developed. The longest 
timescale is that of an equilibrium, the stability of which to ideal MHD modes is 
investigated by computing eigenvalues and eigenvectors of the linearised fast 
timescale equations [3, 23, 26, 281. 

Computer modelling of a MHD plasma remains a formidable task, so further 
simplifying assumptions are generally made. At one extreme are the one-dimen- 
sional transport codes [ 1,4,5], where simplifications are made by assuming a high 
degree of symmetry whilst retaining a detailed model of transport processes. 
Notable pioneering modelling of this type was that performed using the 
Hain-Roberts code [a]. Such models cannot predict effects of toroidal curvature, 
cross sections shaping, multiple magnetic axes, MHD stability, etc. At the other 
extreme are Eulerian multidimensional programs [l, 6, 71 which retain a limited 
description of the physics but allow more complicated field geometries. 

A principal limitation of Eulerian calculations is numerical diffusion. A 
Lagrangian formulation overcomes this problem in one dimension but then runs 
into difficulties in two and three dimensions with the shear of the computational 
grid. The problems associated with purely Lagrangian and with purely Eulerian 
schemes has led a number of investigators to develop mixed Euler-Lagrange 
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schemes in an effort to get the best of both approaches, for example, PIC methods 
[S], ICED-ALE [9], and the Waterbag method [lo, 11, 121. The MHD Waterbag 
method treats principal coordinate surfaces-the flux surfaces-in a Lagrangian 
fashion and employs an orthogonalisation procedure for the piacement of points on 
those surfaces. This approach is effective for single magnetic axis systems and forms 
the basis of the l+D transport code G2M [ 131. 

The adiabatic relaxation method described in this paper owes its origin to the 
adiabatic relaxation [5, 161 and Waterbag [lo] methods devised by Keith Roberts. 
The study was initially motivated by the need to investigate geometrical effects, 
multiple axes, etc. in pinch simulation studies. One objective was to get a unified 
approach which would allow the same numerical representation to be used for 
equilibrium, stability, and transport studies. That such an objective can be achieved 
with the adiabatic relaxation method has, I believe, been demonstrated. Any success 
here owes much to the guiding influence of Keith Roberts, who took an active 
interest and made many constructive suggestions throughout the studies reported 
here. 

Two principal features of the adiabatic relaxation method are that residual errors 
arising from not iterating to exact solutions are physical in nature (an unknown 
kinetic energy), and that finite elements, rather than finite differences are used in its 
discretisation. These two factors lead to schemes which are both robust and flexible. 
The efficacy of the finite element formulation is widely recognised in the solution of 
the Grad-Shafranov equation of equilibria, in the study of the stability of such 
equilibrium, and in the solution of three-dimensional equilibria [3, 22, 23, 24, 26, 
281. In the finite element implementation described herein, an arbitrary triangular 
mesh of piecewise linear elements is used (cf. [ 141). Unlike finite difference counter- 
parts, no particular element connectivity is assumed, so local rezoning and 
refinement can be performed to handle local shears and reconnection in 
evolutionary calculations; this procedure is similar to that used successfully in free 
Lagrangian methods for hydrodynamics [25]. 

The next section gives the equations and Section 3 discusses the relaxation ancl 
equilibrium problem using triangular elements. The remainder of the paper dis- 
cusses linear properties, ideal MHD, and surface-averaged transport. 

2. THE EQUATIONS 

We take as our starting point the charge neutral multifluid MHD equations: 

p$+Vp-jxB=O 
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nk, dT 
--+nk,TV.u=V.K-VT+S, 
y-1 dt 

(3) 

E+uxB=g.j, (4) 

where p, u, p, j, B, n, T, S,,, S, are respectively mass density, fluid velocity, 
pressure, current density, magnetic field, number density, temperature, and sauces. 
The multifluid model repeats Eq. (3) for each species and takes p as the sum of 
partial pressures. For our present purposes, it is sufficient to consider a single fluid 
model, so 

p = nk, T. (5) 

Time derivatives appearing in Eqs. (l)-(4) are material derivatives: 

$,$+,-v. (6) 

The fields satisfy Ampere’s and Faraday’s laws: 

VxB=p,j; V.B=O (7) 

V x E = - iJB/&. (8) 

2.1. Tinzestep Splitting 

The timestep in the adiabatic relaxation model comprises two parts: an adiabatic 
stage, where plasma and fields change according to ideal MHD, and a dissipative 
stage, where source and diffusion are taken into account. The equations given 
above may be formally expressed. 

ti-L,(U)=Lz(U)+S, (9) 

where L, contains “advective” terms and L, contains “diffusive” terms. 
The diffusive part of the timestep solves 

ti=L,(U)iS (10) 

and the advective part solves 

Equations (10) and (11) when applied once timestep give an integration scheme 
which is first-order accurate in time. Second-order accuracy can be obtained by 
symmetrising the splitting in time. 
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Explicitly writing Eq. (10) gives 

dp 
z- - Ll 

nk, ST 
---=V._K.VT+S, 
y-1 dt 

a3 
at= -0xg.j. 

Equation (I I ) for the advective stage becomes 

f-@-u =o 

A . 
p~+Vp-JxB =o 

J$ pp --,’ = 0 

f$3.V”+B(V-“)=O. 

3. RELAXATION P~om31 

Equations ( l5)~-( 18 j are those of ideal MHD. The kinematic equations I; IS), i 1’7’ j, 
and (1X) can be integrated to give point differential expressions for mass, entropy, 
and flux conservation in terms of the Lagrangian displacement gradient matrix 
The result is 

where elements of D are given by 

and 
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is the (time dependent) Lagrangian coordinate of the fluid element initially at 
position x,,. D provides a pointwise description of the deformation of a small fluid 
element. Its volume do, becomes dz = (D[ drO and area ds, of its surface becomes 
ds = (DJ ds, . D-’ under displacements described by Eq. (23). 

Equations (19)-(23) can be combined with Eq. (16) to give a single equation for 
the evolution of the displacement field 5. However, for purposes of discretisation, it 
is preferable to use Hamilton’s principle and express the dynamics using the 
Lagrangian 

B’ -- 2~Lo 
1 

= $ ~-~--~otDl-’ IDI -*(D-W* 
2 

01, ___- 
1’ - 1 a0 

(24) 

where the Lagrangian density, I, satisfies the Euler-Lagrange equations. 

3.1. Finite Element Discretisntion 

The discrete analogue of the Euler-Lagrange equations is obtained by 
approximating the displacement fields in Eq. (24) by a restricted class of functions 

ti= w(xO) 5fCt) (25) 

and taking variations of the approximate Lagrangian with respect to the set of 
unknown (nodal) amplitudes { <;I. The subscripts in Eq, (25) and in what follows 
indicate components, superscripts denote nodes, and sums are implied over 
repeated indices. 

Substituting Eq. (25) into Eq. (24) gives the approximate Lagrangian 

(26) 

and Euler-Lagrange equations 

kfnm&= -au/a<:. (27) 

Elements of the mass matrix M are given by the integral appearing in Eq. (26). 
Replacing the time derivatives in Eq. (27) by a finite difference gives a set of discrete 
equations describing the plasma motion. 

The relaxation approach is most appropriate in the long timescale limit, where 
inertia becomes a small correction term. The equilibrium limit drops the inertia 
entirely to give the nonlinear set of equations 

a u/at; = 0. (28) 
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U may be Taylor expanded about the initial configuration 

U= Uo-SP.FP+aSP.KPq.5q+0(5’). (29) 

FP is the load vector and K is the stiffness matrix. Sufficiently close to a stable 
equilibrium, K will have positive eigenvalues, although for an arbitrary initial 
condition this will not be necessarily so. Consequently, a nonlinear solution method 
which can handle K with negative eigenvalues is needed (see Section 4.1). 

4. EQUILIBRIUM CALCULATIONS 

In this section, we shall consider the implementation of Eq. (28) for systems with 
one ignorable coordinate. For simplicity, we present the discussion for a Cartesian 
system where z is ignorable (ajaz z 0), and then indicate how other geometries may 
be tackled. 

We require the minimum of the energy 17, 

with respect to the Lagrangian displacement field, 5. The displacement gradient 
matrix contains only first derivatives of 5, so the lowest order conforming elements 
we can use are piecewise linear. Taking piecewise linear triangular elements causes 
components D, to be uniform over the elements and reduces Eq. (30) to the sum 
over the elements, 

u=qz7yD(‘-~+ (D/-l D,,Dy,ra4(>, (31) 

where for each element 

I-$ = dz,----- 
s 

Bo, Bo, 

Go 

(32) 

(33) 

D, = 6, + L;i”E;. 

The element side normal vector for side 1 is defined as 

(34) 

1’ = (x3 -x2) x ez/A (35) 

and similarly for h2 and h3 by cyclically permuting indices in Eq. (35). e, is the unit 
z-vector, A is the element area, and (xl, x2, x3) are the positions of the eiement ver- 
tices, labelled anticlockwise. For z ignorable, the x and JJ components of Eq. (21) 
reduce to tlux conservation, $(x) =Il/0(~o). Representing po, tie, and Boz by 



154 JAMES W. EASTWOOD 

piecewise linear functions over the elements allows integrals in Eq. (32) and (33) to 
be evaluated, thus completing the discretisation of Eq. (31). If II/’ = $’ is specified, 
then the elements are flux surface aligned as required for l+D transport models. 

4.1. Energy Minirnisation 

The starting point of an equilibrium calculation is an initial element triangulation 
with prescribed p, $, and B,. The initial energy is p = X(@ + r,“,). After some dis- 
placement 5 , il) the energy becomes 

ul= u(~+~~~)j=c(P+r;,j, 

where 

If &(” is such that UL < U”, then the move brings the configuration closer to 
equilibrium. A repeated application of this process defines an iterative process for 
computing an equilibrium: 

repeat (l)-(3) until (IF// <E 

(1) select 4’” + ‘j such that CT”’ I < U” 

(2) compute IT”+ ‘, Q ’ 

(3) increment iteration counter, II: = n + 1 

In practice, poioidal and toroidal flux are stored instead of &. 
The principal difficulty with this scheme is that of selecting the displacements {<} 

to give a rapid monotonic decrease in U. The simplest approach is to search in the 
steepest descent direction, i.e., take 5 ’ = aFP. It then follows from Eq. (29) that for 
sufficiently small G(, the search direction will guarantee WC ’ < U”. However, if the 
stiffness matrix K is ill-conditioned, as is generally the case, the steepest descent will 
converge slowly. 

The method that proved effective in one dimension was a nonlinear Newton 
iteration [16]. In this method, displacements at each step are found by solving the 
linearised problem K .c = F. This gives quadratic convergence for K positive 
definite, but since positivity of K is not assured far from equilibrium, it can give 
quadratic divergence. In addition, to get quadratic convergence, the linearised 
problem must be solved exactly at each iteration. 

A third possibility, and one which has proved most effective, is a preconditioned 
search algorithm. In the preconditioned search algorithm, the steepest descent 
direction F is replaced by the descent vector M -I . F, where M is some easily 
invertible approximation to the stiffness matrix K. Both incomplete Choleski 
decomposition and SSOR decomposition were tried [17, 18,291: SSOR proved 
most effective and required less storage. 

The definition and computation of load vector F and stiffness matrix K are as 
follows. Substituting Eq. (34) into E.q. (31) and expanding in terms of small (0 
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yields an expression of the form Eq. (29). Each triangular finite element contributes 
to the three node vectors FP', FPz, F p3, where ( pl, p2, p3j are the address in the 
assembled load vector corresponding to nodes (1, 2, 3) of the element. Similarly, 
each element contributes a 3 x 3 submatrix 6K plp~ to the assembled stiffness matrix. 
In a straight Cartesian system, we find for each element that the contributions to 
rhe load vector are 

bFP=j.dr,!(p,+$‘-‘-A”? (3-j’) 

and to the stiffness matrix are 

Similar, but more complicated expressions arise for other geometries (see 
Section 4.2). 

The algorithm for computing F and K is 

1. clear global vector F and matrix K 

3 -~ do for each element 

- find bF and 6K 

-- add bF to F 

-~ add 6K to K 

In the implementation, for an N-node system. F is a 3Nx 1 vector and K is a 
3N x 3N sparse matrix. The preconditioning matrix M was formed either by zero 
infill incomplete Choleski decomposition [ 29 1, 

M = LDL’, (39) 

where 

j-l 

qi= c LikDkL$ K{j f O, 
L,= k=l 

0 otherwise, 
(401 

or, by SSOR decomposition [1X], let 

K=L+D+U, 
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then 

M=(D+oL)D-‘(D+oU)/a(2-w). (421 

The positivity of the ICCG decomposition is not assured for this problem. If 
negative values of Dj are encountered, the decomposition is restarted with v added 
to the diagonals of K (v may be regarded as a pseudo-viscosity). The relaxation 
parameter o for the SSOR decomposition was taken to be 1.7. Close to equilibrium 
when the ICCG decomposition remained positive, it gave fast convergence, but this 
was outweighed by the simplicity and robustness of SSOR decomposition. Both are 
implemented in the program described below, but the SSOR option was used for 
the examples given. 

The preconditioned search scheme is as follows: 

Outer Iteration. 

(1) Compute stiffness matrix K and load vector E 

(2) approximate decomposition M s K; 

(3) compute initial search vector 

s=M-‘F 

a num = (F, s>. 

Inner Iteration. 

(1) Compute distance to new minimum 

Clde,, = (‘-6 Ks) 

a=a Il”lll /a den 

C = t + as; 

(2) test new configuration, 

compute F,,,, ; 
if (s, F,,, ) > E, then line search until (s, F,,, > < &; 

(3) Compute new search direction 

Pden = anum 

a n,,m= <F,,,, fif-‘Fm> 

B,,, = a,,,; 

end if fin,, sufficiently small 

P=kmm/~den 

s = /?s + N- ‘Fnew 
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At each step, 17 and r are updated by adjusting cell integrated pressure and 
magnetic fluxes according to Eqs. (36): This conserves entropy and flux. ( , > 
denotes the inner product: For vectors a and b of length 3N> (a, b) = C:f’J1 aibi. 

When using in a transport model the start always remains close to equilibrium, 
and one outer iteration and a few inner iteration ( - 5) are sufftcient to get a good 
equilibrium. However, when the calculation begins far from equilibrium, then a 
larger number of outer iterations may be required (cf. Section 5.1). 

4.2. Extensions of the Basic Problem 

The discussion so far pertains to a system in the absence of gravity or curvature 
effects. To include the effect of an externally imposed gravitational potential, 4(x), 
requires the addition of the term S pd dz to the energy functional. This leads to 
additonal first- and second-order contributions to the energy 

(43 j 

Equilibria in other geometries where there is an ignorable coordinate (e.g.. 
toroidal or helical) are treated by transforming the Cartesian displacement gradient 
matrix into the appropriate coordinate system. For instance, suitable coordinates 
for the description of axisymmetric toroidal equilibria are polar coordinates 
(o', III, t? ) = (R, @, Z), where axisymmetric implies 2/&D = 0. Triangular elements 
would then lie in the (R, Z) plane, and again the fields can be represented by two 
flux functions ($, RB,). 

In a general non-orthogonal system 

(44) 

where Bk are contravariant field components. The kinematic conservation laws 
become 

where 

(46j 

and 

The basic Cartesian description and implementation carry over to this more 
general case with only the addition of various metrics into the integrals. Indeed, the 
examples of Section 5 were all computed using the same program. 
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4.3. Field Reconstruction 

During the iterative process for minimising the energy, only cell averaged quan- 
tities are updated in computing n and r Once the search for the new equilibrium 
is complete, then new piecewise linear approximations to the pressure and toroidal 
(t) fields are constructed by using weighted residual approximations to Eqs. (20) 
and (21). Pressure is given by solving 

J qb(p - y, ID( --‘) dt = 0 iv 

and z-magnetic field is given by 

J &B, - (D( -* D,,B,,) dT = 0. (48) 

If the elements are aligned with poloidal flux surfaces, then the basis functions 4 can 
be chosen to be functions of $, reducing Eqs. (47) and (48) to one-dimensional 
equations for surface averaged p and Br. In this case, Eq. (48) becomes a statement 
of surface z-flux conservation: 

J * bB= dA = constant. 

In toroidal geometry, the z-magnetic field component is replaced by the covariant 
toroidal field component, f = RB,, and the toroidal version reduces to conser- 
vation of safety factor 

J 4 & ds = 27r J‘ 4q drl/ = constant, (49) 

where, for example, &$) is taken to be a linear function. 

5. EXAMPLES 

An OLYMPUS [19,20] Fortran program has been written implementing the 
arbitrary connectivity linear triangular finite element relaxation method in either 
straight or toroidal geometry and allowing for gravitational terms (Eq. (43)). 

5.1. Interchange Instability 

Figure 1 shows (a) the initial and (b) the equilibrium element triangulation and 
flux function. The initial state has gravity pointing downwards, g= -ey, a density 
which increases with height, p = 1 + y, and a sheared magnetic field, 
B = ( --y + $, 0, 1). Boundary conditions were of zero normal displacement at y = 0 
and y = 1 and mirror symmetry about x = 0 and x = 1. 
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PQLOIDAL FLUX 

ELEMENTS POLOlDAL FLUX 

FIG. 1. (a) Initial and (b) equilibrium element triangulations and flux surfaces for the interchange 
instability in the presence of a sheared magnetic field. 

Figure 2 shows the convergence of the nonlinear search algorithm for the case 
illustrated in Fig. 1. Ten inner iterations per outer iteration were used. The bad 
guess case corresponds to the node displacements shown in Fig. 1. In the good 
guess case, fields were reconstructed (cf. Section 4.3) to provide a new, near 
equilibrium, initial case. Timing for these calculations on an ICE 2976 computer are 
well approximated by the formula (2 + H,,& 14 + 5n,))/S ms per element, where nour 
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(a) (bl 

0 10 20 30 0 10 20 30 

iteration iteration 

FIG. 2. The convergence of the nonlinear search algorithm when applied to the case shown in Fig. 1: 
(a) the residual force norm and (b) the difference of the residual energy from the equilibrium value. l/Foil 
is the initial force norm and AU,,, is obtained by continuing iterations to roundoff. 

and n, are respectively the number of outer and inner iterations. Note that I(Fi! in 
Fig. 2a is not a monotonically decreasing function; this is due to the precon- 
ditioning. 

5.2. Tosoidal Geometry 

Figure 3 illustrates (a) the initial element triangulation, (b j the initial pressure 
profile, (c) the equilibrium flux surfaces, and (dj mod B contours for a low beta 
reversed field pinch configuration. The initial pressure profile arises from taking 
parabolic density and temperature profiles and setting the axial /? to 10d4. Fields 
were initialised to have the same fluxes as the equivalent cylindrical Bessel function 
model: 

ti = r&B0 Jdx)b, f= (Ri - r’)1!2B0 J,(x), 

where x = 2&/a, B, is field strength, a and R, are minor and major radii, and JO is 
the Bessel function. For 8 = 1.4, the equilibrium solver relaxes flux surfaces to the 
shapes shown in Fig. 3c. The mod B contours in Fig. 3d show about 50% trapping 
ratio on these surfaces. 

Figures 4 and 5 are examples of the relaxation method applied to tokamak 
parameters. In both cases an aspect ratio of 3 and axial B of 2% are assumed, with 
initial pressure and safety factor profiles as shown in Fig. 4a. Pressures and safety 
factors are shown as fractions of axial pressure, p,,, and wall safety factor, q,b, = 4.8. 
Initially, f = RB, is set constant. Initial flux surfaces in both instances were taken 
to be nested toroidal surfaces with respectively circular and D-shaped cross section. 
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(b) 

r/a 
ELEMENTS 1 0 1 

td) 

POLOIDAL FLUX MOD B 

FIG. 3. (a) Initial element triangulation, (b) initial pressure profile. (c) equilibrium flux surfaces, and 
(d) lB\ contours for a low p RFP. 

%,,,/I b) 
I \ gw, 

.5 J ‘\,. I’ ’ I ,I 
/ ,,,,,.J<\ 
I l!_,r” 

-I o- \ 74 
0 .5 

4 
1 

hv 

POLOIDAL FLUX 

FIG. 4. (a) Initial pressure and safety factors as functions of poloidal flux and (b) equilibrium flux 
surfaces for an aspect ratio 3 circular cross section tokamak. 
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(a) (b) 

ELEMENTS POLOIDAL FLUX 

FIG. 5. (a) Initial element triangulation and (b) equilibrium flux surfaces for the same initial con- 
ditions as shown in Fig. 4a but applied to a D-shaped cross section. 

Element triangulations used in both these cases were topologically equivalent to 
regular hexagonal meshes. The D-shaped surfaces in Fig. 5 were initialised to lie on 
surfaces where (R, Z) are given by 

R=R,+rcos(8+6 sin 19) 

z = Er sin e, 

where elongation E and skewness 6 were given values F = 1.5 and b = 0.3. 
Figure 6 illustrates one advantage of the finite element approach: flexibility. 

Figure 6a shows a configuration with two magnetic axes, with local refinement of 
the element triangulation around the two axes. The tridiagonal solver which was 
used to reconstruct surface pressures and fluxes is in this case replaced by an 
incomplete Choleski decomposition conjugate gradient matrix solver. Even with 
such a physically singular problem the relaxation method converged, albeit to a 
configuration with large current densities near the x-point magnetic null. Note that 

(a) (b) 

ELEMENTS POLOIDAL FLUX 

FIG. 6. (a) Element triangulation for a two-axis equilibrium and (b) flux surfaces after relaxation. 
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In the absence of transport, the topology of this configuration is fixed. Adding the 
transport step (Section 7) will allow nulls to decay, and reassembling the global 
matrices permits elements to be added, removed, or reconnected as required. 

6. IDEAL MHD 

6.1. Time Dependent 

Replacing the time derivative in Eq. (27) by finite differences in time gives the 
linear multistep scheme 

where F= --?U/?& superscripts indicate timelevel, and node and component 
indices have been omitted. If CC’ + I . IS chosen to be zero, then Eq. (50) describes an 
explicit timestepping scheme whose timestep is restricted to Alfvtn timescales. 

A strongly implicit scheme is obtained by taking only ur+ I nonzero. In this case, 
we may write Eq. (50) as the equivalent minimum principle mini[lV], where 

and apply the equilibrium solver methods described above. This approach damps 
out high frequencies but still retains low frequency inertial effects which may be 
important, for instance, in long timescale modelling of fast pinches. In the limit of a 
large timstep, the equilibrium solver described earlier is recovered. 

6.2. Stability 

Linearising Eq. (27 j and taking time dependence ci exp(iojt) yields the ideal 
MHD eigenvalue problem 

The method of obtaining the equilibrium described above ensures that Eq, (51) 
gives stable roots for axisymmetric modes. Stability to modes with z-dependence 
may be investigated by computing K for trial functions 5 = Wn(x, y j 5” exp( -&z). 
Element triangulation, the method of matrix assembly and the structure of the 
resulting stiffness matrix are the same as for the equilibrium calculation, so 
problems of mixing different discretisation methods and interpolating from one 
mesh for equilibrium and to another for stability are absent. 

It follows from the variational formulation that the eigenvalue 0’ of the discrete 
problem bound those of the continuum from above. Thus, an unstable mode 
(w’ < 0) in Eq. (51) is sufficient for one to exist there in the continuum. However, 
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for lower order elements, the convergence of the eigenspectrum of the discrete to 
the continuum model may be slow [3]. 

6.3. Error Analysis 

A measure of the effect of finite element discretisation is provided by the disper- 
sion relation for magnetosonic waves in a uniform plasma with uniform element 
triangulation (e.g., hexagonal). Evaluating Eq. (51) for p, p, and B uniform, assum- 
ing k and b lie in the plane of the elements, and Fourier transforming the resulting 
expression yields, after some algebra, the approximate Alfven and two 
magnetosonic roots 

02=Tr(A) , (52) 

cA, c,, and b are respectively the Alfven speed, sound speed, and unit vector along 
the unperturbed magnetic field. The matrix A is given by 

(53) 

where @ is the fourier transform of the basis function CV and k, is the aliased 
wavenumber [21]. In the limit as element sizes tend to zero, A= kk, Tr(A)= k*, 
det(A) = 0, and Eqs. (52) reduce to the usual AlfvCn and magnetosonic roots. 

Equations (52) and (53) show that the finite element model values of o are 
always larger than the differential limit, oO, as expected from the variational 
formulation. The elements define preferred directions, so W* depends not only on 
the relative directions of b and k but also on their orientations with respect to the 
element. In the special case of k aligned with a hexagonal mesh axis, the roots, o, of 
Eqs. (52) differ from the correct values only by a multiplicative factor. For linear 
elements the factor gives a fractional error in the frequency 

,&x-l= 3 sin’ 8 _ 1 

00 13*(3 - 2 sin* /3) ’ (54) 

where 0 = kH/2, [ 81~ ~12, and H is the node spacing. Figure 7 shows A and the 
corresponding error arising if the mass matrix is lumped. To show the 
improvements to be expected by going to higher order, the corresponding curve for 
quadratic spline basis functions is shown. Note that whilst lumping leads to little 
deterioration for the case of linear elements, it has a dramatic effect on the higher 
order case. 

A more general analysis of mesh effects on Eqs. (52) can be made by assuming a 
hexagonal mesh and evaluating the consequences of mesh shear and orientation. 
The conclusion from such an analysis is that wavelengths greater than four node 
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lumped 

linear 

quadratic 

FIG. 7. Fractional errors in frequencies for Alfvin and magnetosonic waves for wavenumbers k 
aligned with a principal mesh axis. Solid curves are the errors for linear basis functions and quadratic 
splines. Corresponding curves when the mass matrix is lumped are shown by dashed lines. The upper 
curve is for lumped quadratic splines. 

spacings are in general well approximated ( 6 lOoi error). Large mesh shear, giving 
obtuse triangular elements leads to rapid degradation of accuracy for shorter 
wavelengths. In addition, for arbitrary mesh orientations, the AlfvCn root gives 
(0’ > 0 even when k . b = 0 because of II # 0 terms in Eq. (53). 

7. TRANSPORT MODELLING 

Combining Eqs. (12~(14) with the relaxation model for Eqs. (15t(l8) gives a 
self-consistent transport model. If elements are chosen to be aligned with flux sur- 
faces, then on long timescales where density and temperature equilibrate on flux 
surfaces, the transport equations reduce to one-dimensional equations for surface 
averaged variables. 

An obvious choice is elements which remain aligned with flux surfaces (cf. 
Section 4.3) but on which the value of poloidal flux can change to avoid elements 
accumulating at magnetic nulls. If we let the time dependent basis functions for the 
diffusion stage of the timestep be { 4”) and the element velocity be u, then explicit 
reference to u in the discrete approximations to the surface equation is avoided by 
choosing “incompressible” surfaces, i.e., the surfaced average value (u . V@ > of 
u. V& is taken to be zero. 

Consider, for example, the mass diffusion equation (12 j. This yields 
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Writing p = p’QI’, where pr is the value of y on flux surface r and the sum over P is 
implied, and using the result (u . V@) = 0 reduces the projected mass diffusion 
equation to 

Similar simplifications occur for the temperature, poloidal, and toroidal flux 
equations. Replacing time derivatives by finite differences and assuming ~,4 are 
piecewise linear functions reduces the transport equations to a set of block 
tridiagonal equations for single axis systems. For further details, see Ref. [15]. 

8. FINAL REMARKS 

The two-dimensional adiabatic relaxation method provides the basis for a con- 
sistent numerical approach to ideal MHD, stability, equilibrium, and transport 
calculations. Finite elements provide both accuracy nd flexibility. Matrix assembly 
permits local refinement and rezoning to allow field reconnection and to overcome 
the mesh shear problems that are inherent in two- and three-dimensional 
Lagrangian models. In addition, the local nature of the approximation enables a 
wide range of geometries and field connectivities to be tackled with the same 
software. 

The relaxation method is robust in that residual errors may be interpreted 
physically as a residual (unknown) kinetic energy. It differs from the more com- 
monly used Grad--Shafranov equation methods in that equilibria are found for 
prescribed flux surface entropy and safety factor rather than for prescribed pressure 
and toroidal flux functions. Also, it can be extended to include inertial corrections. 

The implementation described combines three of Keith Roberts’ ideas which have 
been influential in computational plasma physics: adiabatic relaxation. Lagrangian 
surface modelling (“waterbags”), and the OLYMPUS methodology and conven- 
tions for constructing scientific software. Hopefully, it will provide part of fitting 
tribute to his wide ranging computational physics interests and expertise. 
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